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We carry out extensive off-lattice computer simulations of bimodal polymer brushes and discuss the
effects of different grafting geometry and solvent quality on the structure of such mixed polymer brushes.
For a flat grafting surface and good solvents, the short and long chains segregate vertically and the long
chains stretch more in the coexisting region. The situation is different for polymers grafted onto a flat
surface and in contact with poor solvents where vertical segregation between the long and the short
chains is found to be much weaker. Also, as the function of short chains increases in the layer, both the
short and the long chains stretch less. This is different from the good solvent case where the stretching
of the short chains increases as the short chain fraction increases. For a spherical grafting surface and in
good solvents, the stretching of the two type of chains is similar in the inner layer. In a poor solvent, the
situation is similar to a flat grafting surface with poor solvents and both types of chains are equally

stretched over the entire region of the layer.

PACS number(s): 36.20.—r, 82.70.—y, 87.15.—v, 81.60.Jw

I. INTRODUCTION

A dispersed system, in which colloidal particles are
maintained in suspension, is desired in a wide range of
areas such as paints, glues, food emulsions, and pharma-
ceuticals [1]. This stabilization can be achieved by end
grafting suitable polymer chains on the surface of the col-
loidal particles. In such a situation, the repulsion be-
tween the resulting polymer layers or ‘“brushes” main-
tains the colloidal particles in suspension. A proper un-
derstanding of the stabilization process thus requires a
thorough knowledge of the structure of the polymer
brush in various solvent conditions and in the presence of
various surface interactions. For this reason, the detailed
structure of polymer brushes, as well as the interactions
between them, has been the subject of many recent exper-
iments [2-5], theoretical studies [6,7], and extensive com-
puter simulations [8].

While most of the pertinent work mainly has dealt
with the monodisperse brush, some theoretical work has
also been carried out to understand the effects of po-
lydispersity on the structure of polymer brushes. In ex-
perimental situations polydispersity is an often unavoid-
able feature, which greatly affects the brush structure.
This fact is an important motivation for theoretical stud-
ies of a polydisperse brush. One finds that polydispersity
can actually be used to one’s advantage in tailoring
specific brush structures. In good solvent conditions and
for flat grafting surfaces, a vertical segregation takes
place between chains of different molecular weights.
Moreover, in the coexisting region of long and short
chains, a difference between the local degree of stretching
has been observed. Thus the outer region of the brush
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may be used for various desired functions, such as a
specific interaction with another surface.

The structure of the polydisperse brush has been stud-
ied theoretically by Milner, Witten, and Cates [9] and by
Birstein, Liatskaya, and Zhulina [10]. Chakrabarti and
Toral [11] carried out Monte Carlo simulations in a lat-
tice model for both polydisperse and bidisperse polymer
brushes. A bimodal molecular weight (chain length) dis-
tribution has often been used in simulations as a model
system for polydispersity. Subsequently, Lai and Zhulina
[12] have studied the bidisperse brush by simulations of a
bond-fluctuation model and Dan and Tirrel [13] have
studied the bidisperse system by using a numerical self-
consistent model. Most of these previous studies con-
sidered a good solvent and a flat grafting geometry. A
more recent work, however, has addressed the effect of
solvent quality on a mixed brush in a selective solvent
[14].

In this paper, we extend previous work on polydisperse
brushes by carrying out detailed simulations on a freely
joined hard-sphere model (or “pearl-necklace” model) of
polymer chains for various grafting geometries and for
various nonselective solvents. Previously, this model has
been used by us to study the structure of the mono-
disperse brush grafted onto a spherical surface [15] and
the interactions between polymer brushes grafted onto
two. parallel surfaces [16]. In both cases, the agreement
between the simulations and the theoretical results was
very good. This fact, together with the computational
simplicity, makes the pearl-necklace model a natural
choice among the off-lattice models for the study of
brushes. In the present work, we consider a brush with a
bimodal chain length distribution. Our results for flat
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grafting surfaces with good solvents agree quite well with
earlier analytical and numerical calculations. Results for
spherical grafting surfaces and for flat surfaces with poor
solvents are presented and discussed in detail. The rest of
the paper is organized as follows. The model and the
simulation method are described in Sec. II. Section III
presents the numerical results and their comparison with
theoretical predictions whenever possible and Sec. IV
outlines the main conclusions.

II. MODEL AND NUMERICAL PROCEDURE

We consider a bimodal distribution of chain lengths for
polymer molecules grafted onto either a flat surface or a
spherical surface under variable solvent conditions. The
polymer chains are modeled by the so-called pearl-
necklace model. In this model, the long chains and the
short chains are considered to be made of N; and Ny
monomers, respectively, linked by rigid rods. Each
monomer is modeled as a hard sphere of diameter unity.
The distance between successive monomer centers is set
to be 1.1 times the diameter. The first monomer (‘“head”)
of each chain is permanently anchored onto the grafting
surface and consecutive monomers are added by execut-
ing a self-avoiding random walk starting from the first
monomer. Besides the self- and mutually avoiding in-
teractions (the monomer spheres cannot penetrate each
other or the grafting surface), an attractive interaction
between monomers is introduced. The total interaction
potential between monomers in units of kT can be writ-
ten as

o, r=<2a
V(r)={—V, 2a<r=<é4a (1)

0, r>4a,
where a is the radius of a hard-sphere monomer and r is

the distance between a pair of monomers. We choose
several different values for ¥V, so that the excluded

]
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volume parameter [17]
o=47 [ “(1—e " ")y2dr )
0

takes both positive and negative values. A positive value
of w corresponds to a good solvent and a negative value
corresponds to a solvent poorer than the © solvent,
which is characterized by =0 [18].

For both flat and spherical surfaces, we choose a bimo-
dal chain length distribution with N, =2N;=100. We
consider several values for the short chain fraction f
given by f =0, 0.25, 0.5, 0.75, and 1. In order to sample
the configurations of the system in equilibrium, we simu-
late the monomer movements by “kink jumps” appropri-
ate for this off-lattice model. The energetics of the sys-
tem is handled by the standard Metropolis algorithm.
Typically, we discard 10° Monte Carlo steps (MCS) per
monomer for equilibrium and average the quantities over
5% 10* MCS. Proper equilibrium attained by the system
is tested by comparing measured quantities (such as
monomer density profiles) obtained when the system
evolved from different initial configurations.

In the flat surface case, we consider a total number of
N, chains end grafted onto the z =0 surface of a cubic
box of size L, XL,XL,. The centers of the grafted
monomers are actually located at z=1/2. L, is chosen
to be large enough so that no chain can reach the z =L,
surface. We choose L,=L,=40 and apply periodic
boundary condition in the x and y directions. The total
grafting density o is defined as

N,

p
= . 3
o L.L, (3)

We considered N, =128 and thus the total grafting densi-
ty 0=0.08 for all cases with a flat grafting surface.
Among other quantities, we have computed the monomer
density defined as

number of A4-type monomers between z and z +1)

L.L,

and the chain-end density €(z) given by

(number of 4-type end monomers between z and z +1)

€4(z)= I L
x =y

where A4 could correspond to a contribution from only
short chains [@g(2),€4(2z)], only long chains
[¢.(2),e,.(2)], or all types of chains [¢(z),e(z)]. The
cosine of the angle between the chain segments and the
+2z direction is calculated as a measure of the degree of
stretching of the polymer chains. The cosine of the angle
between the ith segment and +z direction is defined as

Z; —Z;
(cosb;) =<L——> , (6)
Yit1™F;

where i varies from 1 to N; —1 for the long chains and
from 1 to Ng—1 for the short chains. z;,,,z; are the
coordinates of the (i +1)th and ith monomers in z direc-

, (5)

r
tion, r;;—r;=1.1 is the distance between successive
monomers, and the angular brackets indicate both a
chain average and an equilibrium average.

For the spherical surface case, we consider the radius
R of the grafting sphere to be five times the monomer di-
ameter and the total chain number N, =100. In this case
the grafting density o is defined as

— NP
O 4R 7

which is 0.32 in our simulations. The monomer density
in this case is calculated from
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[number of A4-type monomers with distance to origin between (» +R) and (r +R +1)] @)
4m(r+R +1/2)
and the end-chain density is given by
[number of 4-type end monomers with distance to origin between (r +R) and (r +R +1)] ©)

€ (r)=

Here, again, A could correspond to the contribution
from only short chains [¢s(7),e5(7)], only long chains
[é.(r),e (r)], or all types of chains [¢(r),e(r)]. The
stretching of the ith segment cos6; is defined as

Pi+1“Pi>
1.1 ’

where p; , and p; are, respectively, the projections of the
coordinates of the (i +1)th and ith monomers to the line
joining the center of the grafting sphere to the ith mono-
mer.

(cos6; )= ( (10)

III. RESULTS

A. Chains in a good solvent

Under good solvent condition, there is no attractive in-
teraction between monomers [V;=0 in Eq. (1)] and they
are subjected only to the excluded volume interaction. In
this case, the chains stretch normal to the grafting sur-
face and form a (bimodal) polymer brush. We have com-
puted the monomer density, the chain-end density, and
the stretching of the individual chains of the bimodal
brush for various short chain fractions. In the following
we present these results for both flat and spherical graft-
ing surfaces.

1. Flat grafting surface

Monomer and chain-end density profiles are shown in
Figs. 1(a) and 1(b) and the stretching of the chains are
presented in Fig. 2. In agreement with previous numeri-
cal and theoretical results [9—-13], we can clearly see the
two main features of the bimodal brush: vertical segrega-
tion and the difference of the local degree of stretching
between the long and short chains. The monomer density
profile for the short chains resembles a parabolic form
similar to the monodisperse case [19] [Fig. 1(a)]. The
long chains are more stretched in the coexisting region
and thus the corresponding density profiles have “pla-
teau” regions throughout the inner layer. Close to the
grafting surface, the total density of the bimodal brush
coincides with that of a monodisperse distribution of
chains with length Ng and grafting density 0 =0.08. At
a certain distance z,, these two profiles deviate from each
other. This particular distance z; increases as the short
chain fraction f increases. Numerical values for z; are in
good agreement with the result of the self-consistent field
(SCF) theory [9,10]

1200
i)

zZy=

Ns[1—(1=f»712, §8))

4m(r+R+1/2)?

[

where the numerical value for the excluded volume pa-
rameter o is taken from previous simulations (0=1.85)
[16].

The segregation between the long chains and the short
chains is also clearly displayed in the chain-end density
profiles [Fig. 1(b)]. The total end density profile shows
two peaks. The short chain ends are mostly found in the
inner region while the longer chains ends are predom-
inantly found in the outer region. There is a crossover re-
gion where the ends of both types of chains inter-
penetrate. With the increase of the short chain fraction
f, the end density profile for the short chains shifts away
from the grafting surface while that for the long chains
shifts toward the surface.
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FIG. 1. (a) Density profiles for a bimodal brush grafted onto
a flat surface and in contact with a good solvent for different
short chain fractions f. The total density and the contribution
coming from each type of chains are shown separately. (b)
Chain-end density profiles for a bimodal brush grafted onto a
flat surface and in contact with a good solvent for different short
chain fractions f. The total chain-end density and the contribu-
tion coming from each type of chains are shown separately.
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Results for the stretching parameter cos;, for the bi-
modal brush are shown in Fig. 2 as a function of the
monomer number i. It is clear that, regardless of the
short chain fraction f in the bimodal brush, the long
chains are always more stretched than the short ones.
This is in agreement with the SCF theory and previous
numerical results. As the short chain fraction f in-
creases, the stretching parameter for the short chains in-
creases and so does this quantity for the long chain seg-
ments in the coexisting region. However, in the outer re-
gion where only long chain exists, cosfd; for the long
chains decreases when f increases, due to the “dilution”
created by the short chains.

2. Spherical grafting surface

As mentioned earlier, the radius R of the grafting sur-
face is five times the monomer diameter and the total
chain number is N,=100. Monomer density profiles
computed in this case are shown in Figs. 3(a) and 3(b).
For spherical grafting surfaces, there exists a “space gra-
dient” in the r direction, i.e., there is less space near the
grafting surface and more in the outer region. The densi-
ty profiles look quite different from those obtained for the
flat grafting surface in the preceding subsection, but are
similar to that obtained in a previous simulation of a
monodisperse polymer brush grafted onto a spherical sur-
face [15]. Throughout the inner region of the layer, the
monomer density for the long chains of a brush with a
particular value of short chain fraction f is almost identi-
cal to the monomer density for the short chains of the
corresponding brush with a fraction 1—f [Fig. 3(a)]. We
also observe that the total density for different values of f
are very similar in the inner region, while they tend to be
different only in the region far away from the grafting
surface [Fig. 3(b)].

The chain-end density profiles are shown in Figs. 4(a)
and 4(b). We observe that the chain ends are squeezed
out of the region near the grafting surface creating a fee-
ble “‘exclusion zone” [15,20-22]. Compared to the flat
surface situation, the two different groups of chain ends
interpenetrate each other much more in this case. Also,
when the short chain fraction f changes, there is not

0.70 T T T

—— (=0,N=100
0.60 good solvent, flat surface |* ~ F023N=100
o f=025N=50
0=0.08 X f=0.75N=100
& f=075N=50
...... f=1,N=50

FIG. 2. Stretching parameter cos8; for long and short chains
of a bimodal brush grafted onto a flat surface and in contact
with a good solvent for different short chain fractions f.

much of a “peak shift” in the density profiles [compare
Fig. 4(a) with Fig. 1(b)]. In the total end density profiles
[Fig. 4(b)], we do not observe the appearance of two
separated peaks as in the flat surface situation.

The above results for both the monomer density and
the chain-end density suggest that for the spherical graft-
ing case, both long and short chains stretch nearly equal
amounts in the inner-most layer. This fact is clearly
demonstrated in the results of cosf; shown in Fig. 5.
Near the surface, cosf; has a large value that is nearly
the same for both the long and the short chains and is in-
dependent of the short chain fraction f. It decreases fast
with increasing i. Away from the narrow region near the
grafting surface, we can see the difference of stretching
between the long and the short chains. Long chains
stretch more than short ones in this region. With the in-
creasing of f, cos@; for short chains increases throughout
the layer. For long chains, cosf; increases in the inner
region and decreases in the outer region. However, the
difference is not as large as in the flat surface case.
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FIG. 3. (a) Density profiles for long and short chains of a bi-
modal brush grafted onto a spherical surface of radius R =5
and in contact with a good solvent for different short chain frac-
tions f. Note that the density for the long chain of a brush with
a particular value of short-chain fraction f is almost identical to
the density for the short chain of the corresponding brush with
a short-chain fraction 1—f. (b) Total density profile for bimo-
dal brush grafted onto a spherical surface of radius R =5 and in
contact with a good solvent for different short chain fractions f.
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FIG. 4. (a) Chain-end density profiles for long and short
chains of a bimodal brush grafted onto a spherical surface of ra-
dius R =5 and in contact with a good solvent for different short
chain fractions f. (b) Total chain-end density profile of a bimo-
dal brush grafted onto a spherical surface of radius R =5 and in
contact with a good solvent for different short chain fractions f.
Here we do not observe two separated peaks as in Fig. 1(b).
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FIG. 5. cos6; for long and short chains of a bimodal brush
grafted onto a spherical surface of radius R =5 and in contact
with a good solvent for different short chain fractions f. Note
that cos@; is nearly independent of chain type and short chain
fraction f near the grafting surface.
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B. Chains in poor solvents

Here the interaction potential between monomers is
described by Eq. (1). We choose several different values
of ¥V, corresponding to different solvent qualities. Note
that ¥;=0 corresponds to good solvents, while for
Vo=Vc=0.1335 the excluded volume parameter w=~0
[Eq. (2)]. This latter choice of ¥V, would then approxi-
mately correspond to a © solvent. We have also con-
sidered Vy=1.5V and 2.5V, which would correspond
to two different poor solvents.

1. Flat grafting surface

Results for the grafting density o0 =0.08 and a fixed
short chain fraction f =0.5 are shown in Figs. 6 and 7.
Monomer densities for the long and short chains are
shown in Fig. 6(a). As the solvent quality becomes worse,
the attractive interaction between monomers increases.
However, due to the presence of a hard-sphere repulsion,
the chains do not collapse completely and the peaks for
the long and the short chains are separated out. As ¥V
increases, these two peaks move closer to each other.
With decreasing solvent quality, the total density profile
[Fig. 6(b)] shrinks to a narrower region near the surface
and gets higher and flatter while it gets sharper at the
edge. For the values of V| considered here, we did not
observe any ‘“‘crystallization” of monomers as seen by Lai
and Binder [23] in their bond fluctuation model of a
monodisperse brush in a poor solvent. Snapshots of chain
configurations indicate that the monomers are confined
to a very narrow region near the grafting surface for poor
solvents. However, they are distributed uniformly and in
the chain configurations we do not find any obvious sig-
nature of a microphase separation [23-26] for the values
of o, N, and V, considered here.

There are several interesting features in the monomer
density profiles for poor solvents. First, we observe that
the long chain density has a ‘“‘shoulder” near the peak of
the short chain profile. This is due to the strong attrac-
tive interaction between the monomers. Another in-
teresting feature of the profiles is that the short chain
density profile spreads into almost all the region where
the long one exists, implying very little vertical segrega-
tion between the long and short chains. This is also evi-
dent in the chain-end density shown in Fig. 6(c). In poor
solvents, the chain-end densities for the long and short
chains extend the same distance from the grafting sur-
face.

In Fig. 7 we present the results for cosf; for both long
and short chains. As the solvent quality worsens, cos6;
decreases for both long and short chains. The stretching
of the long chains and of the short chains is similar. Ac-
tually, for ¥,=1.5V_, one can say that the short chains
are actually a little more stretched than the long chains in
the coexisting region of the layer. This is in strong con-
trast to the situation in a good solvent. For larger V,
however, cosf; shows large fluctuations, implying that
the orientation of the segments is not strongly correlated
in the z direction and none of the chains are really
stretched [23].
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We also examined the influence of short chain fraction
f on the behavior of bimodal chains in poor solvent. We
choose Vy;=1.5V, and f=0,0.25,0.75,1. Our results
for cos6; are shown in Fig. 8. In poor solvent situation,
we find that as f increases, the short chains become less
stretched. This is in sharp contrast to the situation in a
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FIG. 6. (a) Density profiles for long and short chains of bi-
modal brushes grafted onto a flat surface for different solvent
conditions. The short chain fraction f=0.5. (b) Total density
profile for bimodal brushes grafted onto a flat surface for
different solvent conditions. The short chain fraction f =0.5.
(c) Chain-end density profiles for long and short chains of bimo-
dal brushes grafted onto a flat surface for different solvent con-
ditions. The short chain fraction f =0.5.
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FIG. 7. Stretching parameter cos; for long and short chains
of bimodal brushes grafted onto a flat surface for different sol-
vent conditions. The short chain fraction f =0.5.

good solvent, where the stretching parameter for the
short chains increases as the short chain fraction f in-
creases (compare Fig. 8 with Fig. 2). For the long chains
the stretching parameter also decreases over the entire re-
gion as the short chain fraction increases.

2. Spherical grafting surface

In this case, the general behavior of the long and short
chains with the changing of solvent quality is quite simi-
lar to that for a flat grafting surface. In Fig. 9 we show
the density profiles for f=0.5. In contrast to the good
solvent case, where the density profile for the short and
long chains is identical in the innermost layer, the shape
of the density profiles for the long and short chains is
different in poor solvents [Fig. 9(a)]. The density profiles
now develop peaks not seen in good solvent condition.
These peaks for the long chains and the short chains are
close but still separated. However, the extension of the
sublayers is the same for both long and short chains. The
total density profiles in poor solvent condition look simi-
lar to those obtained with a flat grafting surface [Fig.
9(b)]. The stretching of the chains decreases as the sol-

0.60 T T T
— =0,N=100
0.50 flat surface, 6=0.08 --- f=0.25N=100
' o f=025N=50
Vo=1.5Ve — —£=075,N=100
040 17 £=0.75 N=50
0 f=1,N=50

0.00 20.00 40.00 60.00 80.00 100.00

FIG. 8. Stretching parameter cos6; for long and short chains
of bimodal brushes grafted onto a flat surface for different short
chain fractions f. Here the solvent is a poor solvent and
characterized by V,=1.5V (see the text).
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FIG. 9. (a) Density profile for long and short chains of bimo-
dal brushes grafted onto a spherical surface of radius R =5 for
different solvent conditions. The short chain fraction f=0.5.
(b) Total density profile of bimodal brushes grafted onto a
spherical surface of radius R =5 for different solvent condi-
tions. The short chain fraction f =0.5.

vent quality becomes poorer and for V,=1.5V, both the
long and short chains stretch almost the same amount
throughout the layer.

IV. CONCLUDING REMARKS

We have carried out off-lattice computer simulations to
study the structure of bimodal brushes grafted onto both
flat and spherical surfaces and in contact with either
good or poor solvents. The results for flat grafting sur-
face and good solvents compare well with previous
analytical results and simulations carried out in different

models for polymer chains. In this case, we find that the
short and long chains segregate vertically and the long
chains stretch more in the coexisting region. The situa-
tion is different with polymers grafted onto flat surface
and in contact with poor solvents. We find that the long
and short chains do not segregate vertically by an appre-
ciable amount and the amount of stretching for each type
of chains is quite similar. Actually, in some poor solvent
condition, the short chains are found to stretch a little
more than the long chains. Also, as the fraction of short
chains increase in the layer, both the short and the long
chains stretch less. This is different from the good sol-
vent case, where the stretching parameter for the short
chains increases as f increases.

For a spherical grafting surface and in good solvents,
the short and long chains are not as segregated as in a flat
grafting surface. The stretching of the two types of
chains is similar in the inner layer and is dictated by the
availability of space near the spherical grafting surface.
In poor solvent conditions, the situation is similar to the
flat grafting case and both type of chains are equally
stretched over the entire region of the layer.

The simulation results agree well with self-consistent
field theories for flat grafting surfaces and good solvents.
For poor solvents and for spherical grafting surfaces, we
could not compare our results with theories, since no
theoretical result for bimodal brushes are available in the
literature for such conditions. We note that recent
mean-field calculations for the structure of the mono-
disperse brush in good solvents and grafted on a spherical
surface [27] compare quite well with our previous numer-
ical results [15] in such systems. Similar theoretical work
also exists for mixed micelles and bilayers [28]. More im-
portantly, recent surface force experiments [14] have
measured the interactions between two mixed brushes in
a selective solvent. We hope that our numerical results
will motivate further theoretical work and a quantitative
comparison between theory, simulation, and experiments
will be possible in the near future.
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